11,126 research outputs found

    Non-Gaussianity from Baryon Asymmetry

    Full text link
    We study a scenario that large non-Gaussianity arises from the baryon asymmetry of the Universe. There are baryogenesis scenarios containing a light scalar field, which may result in baryonic isocurvature perturbations with some amount of non-Gaussianity. As an explicit example we consider the Affleck-Dine mechanism and show that a flat direction of the supersymmeteric standard model can generate large non-Gaussianity in the curvature perturbations, satisfying the observational constraints on the baryonic isocurvature perturbations. The sign of a non-linearity parameter, f_{NL}, is negative, if the Affleck-Dine mechanism accounts for the observed baryon asymmetry; otherwise it can be either positive or negative.Comment: 25 pages, 7 figures; minor correction, references added; version to appear in JCA

    New Superconducting and Magnetic Phases Emerge on the Verge of Antiferromagnetism in CeIn3_3

    Full text link
    We report the discovery of new superconducting and novel magnetic phases in CeIn3_3 on the verge of antiferromagnetism (AFM) under pressure (PP) through the In-nuclear quadrupole resonance (NQR) measurements. We have found a PP-induced phase separation of AFM and paramagnetism (PM) without any trace for a quantum phase transition in CeIn3_3. A new type of superconductivity (SC) was found in P=2.282.5P=2.28-2.5 GPa to coexist with AFM that is magnetically separated from PM where the heavy fermion SC takes place. We propose that the magnetic excitations such as spin-density fluctuations induced by the first-order magnetic phase transition might mediate attractive interaction to form Cooper pairs.Comment: 4 pages, 4 EPS figures, submitted to J. Phys. Soc. Jp

    ^{115}In-NQR evidence for unconventional superconductivity in CeIn_3 under pressure

    Full text link
    We report evidence for unconventional superconductivity in CeIn_3 at a pressure P = 2.65 GPa above critical pressure (P_c ~ 2.5 GPa) revealed by the measurements of nuclear-spin-lattice-relaxation time (T_1) and ac-susceptibility (ac-chi). Both the measurements of T_1 and ac-chi have pointed to a superconducting transition at T_c = 95 mK, which is much lower than an onset temperature T_{onset} = 0.15 K at zero resistance. The temperature dependence of 1/T_1 shows no coherence peak just below T_c, indicative of an unconventional nature for the superconductivity induced in CeIn_3.Comment: 4 pages, 4 figures, to be published in Phys.Rev.

    Gapless Magnetic and Quasiparticle Excitations due to the Coexistence of Antiferromagnetism and Superconductivity in CeRhIn5_5 : A study of 115^{115}In-NQR under Pressure

    Full text link
    We report systematic measurements of ac-susceptibility, nuclear-quadrupole-resonance spectrum, and nuclear-spin-lattice-relaxation time (T1T_1) on the pressure (PP)- induced heavy-fermion (HF) superconductor CeRhIn5_5. The temperature (TT) dependence of 1/T11/T_1 at PP = 1.6 GPa has revealed that antiferromagnetism (AFM) and superconductivity (SC) coexist microscopically, exhibiting the respective transition at TN=2.8T_N = 2.8 K and TcMFT^{MF}_c = 0.9 K. It is demonstrated that SC does not yield any trace of gap opening in low-lying excitations below Tconset=2T_c^{onset} = 2 K, but TcMF=0.9T_c^{MF} = 0.9 K, followed by a T1TT_1T = const law. These results point to the unconventional characteristics of SC coexisting with AFM. We highlight that both of the results deserve theoretical work on the gapless nature in low-lying excitation spectrum due to the coexistence of AFM and SC and the lack of the mean-field regime below Tconset=2T_c^{onset} = 2 K.Comment: 4pages,5figures,revised versio

    Baryon Asymmetry in a Heavy Moduli Scenario

    Full text link
    In some models of supersymmetry breaking, modulus fields are heavy enough to decay before BBN. But the large entropy produced via moduli decay significantly dilutes the preexisting baryon asymmetry of the universe. We study whether Affleck-Dine mechanism can provide enough baryon asymmetry which survives the dilution, and find several situations in which desirable amount of baryon number remains after the dilution. The possibility of non-thermal dark matter is also discussed. This provides the realistic cosmological scenario with heavy moduli.Comment: 36 pages, 5 figures; added a reference; v3: minor correction

    Evidence for Uniform Coexistence of Ferromagnetism and Unconventional Superconductivity in UGe_2: A ^73Ge-NQR Study under Pressure

    Full text link
    We report on the itinerant ferromagnetic superconductor UGe_2 through ^73Ge-NQR measurements under pressure (P). The P dependence of the NQR spectrum signals a first-order transition from the low-temperature (T) and low-P ferromagnetic phase (FM2) to high-T and high-P one (FM1) around a critical pressure of P_x ~ 1.2 GPa. The superconductivity exhibiting a maximum value of T_sc=0.7 K at P_x ~ 1.2 GPa, was found to take place in connection with the P-induced first-order transition. The nuclear spin-lattice relaxation rate 1/T_1 has probed the ferromagnetic transition, exhibiting a peak at the Curie temperature as well as a decrease without the coherence peak below T_sc. These results reveal the uniformly coexistent phase of ferromagnetism and unconventional superconductivity with a line-node gap. We remark on an intimate interplay between the onset of superconductivity and the underlying electronic state for the ferromagnetic phases.Comment: 8 pages, 9 figures. to appear in J. Phys. Soc. JPN, 74 No.2 (2005

    On Minor Variations of Latitude at Greenwich

    Get PDF

    Early reionization by decaying particles and cosmic microwave background radiation

    Full text link
    We study the reionization scenario in which ionizing UV photons emitted from decaying particle, in addition to usual contributions from stars and quasars, ionize the universe. It is found that the scenario is consistent with both the first year data of the Wilkinson Microwave Anisotropy Probe and the fact that the universe is not fully ionized until z \sim 6 as observed by Sloan Digital Sky Survey. Likelihood analysis revealed that rather broad parameter space can be chosen. This scenario will be discriminated by future observations, especially by the EE polarization power spectrum of cosmic microwave background radiation.Comment: 5 pages, 5 figures, fig 2, table 1, and some typos are correcte
    corecore